
March 20, 2014 LiU — Solving the Halting Problem / 79

Brian Cantwell Smith 
University of Toronto

sensible 
motivation

mind-numbing detail

grand 
conclusions!

(and other skulduggery in the foundations of computing)

Solving the halting problem

1



March 20, 2014 LiU — Solving the Halting Problem / 79

≈

2

In 1967, as a university student, I was intrigued by the idea that people might be computers.



March 20, 2014 LiU — Solving the Halting Problem / 79

computation

≈

theory of mind theory of computation

formal symbol manipulation
gofai

3

People thought computers were formal symbol manipulations, and so people if were computers, they must be formal symbol 
manipulators too.  The idea was called “GOFAI”—Haugeland’s name for “good old-fashioned artificial intelligence”



March 20, 2014 LiU — Solving the Halting Problem / 79

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation

… etc.

social (extended)

gofai

?

4

By the mid 1980s or so, GOFAI was deemed to have failed. Most cognitive scientists set computation aside, and turned to 
other theories of mind…the relative merits of which are still very much debated today.



March 20, 2014 LiU — Solving the Halting Problem / 79

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation

… etc.

social (extended)

gofai

?

5

Being by nature slow, I remained interested in the “people might be computers” hypothesis.



March 20, 2014 LiU — Solving the Halting Problem / 79

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation
information processing
e"ective computability
digital state machines

… etc.
etc. …

social (extended)

gofai

? ?

6

What preoccupied me was the assumption that computers were formal symbol manipulators. I wasn’t sure that was true. 
So I set temporarily set the cognitive case aside, and set out on an investigation of what computers are.



March 20, 2014 LiU — Solving the Halting Problem / 79

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation
information processing
e"ective computability
digital state machines

… etc.
etc. …

social (extended)

gofai

? ?

7

I’ve always taken the “people ≈ computers” hypothesis to be fundamentally empirical: that people might be computers, 
whatever computers are. Until we have an adequate account of computation, we can’t really assess the hypothesis.



March 20, 2014 LiU — Solving the Halting Problem / 79

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation
information processing
e"ective computability
digital state machines

… etc.
etc. …

social (extended)

gofai

? ?

8

So I’ve spent the last 40 years trying to understand computation. Today I want to talk about one idea about computers: 
the notion of “effective computability” ensconced in the official “theory of computation” or “theory of computability.”



March 20, 2014 LiU — Solving the Halting Problem / 79

Contents

 1. Context 
 2. Turing machines 
 3. The halting problem (H) 
 4. Solving H 
 5. Morals for cognitive science

9



March 20, 2014 LiU — Solving the Halting Problem / 79

Contents

 1. Context 
 2. Turing machines 
 3. The halting problem (H) 
 4. Solving H 
 5. Morals for cognitive science

10



March 20, 2014 LiU — Solving the Halting Problem / 79

· A mathematical theory of computability  constraints 

· As important for showing what can’t be done 
(effectively, mechanically, by a “pure machine”) 
as for showing what can be done 

· Most commonly formulated in terms of Turing Machines 

· What sorts of constraints are they? 
 — Mathematical? 

 — Logical? 
 — Physical? 
 — Or is computation its own autonomous thing, 
  subject to its own independent constraints?

The theory of effective computability …

known as the official 
“theory of computation”

11



Monday Tuesday Wednesday Thursday Friday

6:00 Let
 there
 be light! all day: Rest!

9:00 Get
 to work
 on the
 firmament

all day: Make
 the earth

7:00 Create
 sun

21:00 Add
  moon

9:00 Birds &
 bees
 (also
 fish)

SundaySaturday

9:00 Animals
 & reptiles
12:00 Create
 man; get
 him to
 name the
 animals

March 20, 2014 LiU — Solving the Halting Problem / 79

If 
• Mathematics & logic were in place last week 
• Laws of physics were created on Monday 
• Semantics didn’t arrive until Saturday 

then 
• On what day were the computability 

constraints established? 

During Creation… 
On what day of the week did God make the computability constraints?

12



March 20, 2014 LiU — Solving the Halting Problem / 79

· We can find out a lot about the nature of the constraints by 
analyzing the place they were introduced: 

· Turing machines—and they limits on what they can do

The theory of effective computability (cont’d)

13



March 20, 2014 LiU — Solving the Halting Problem / 79

The structure of a Turing Machine

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

machine or  
“controller”

mark sequences

numbers
representation (encoding)

14



March 20, 2014 LiU — Solving the Halting Problem / 79

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

Computation is unarguably horizontal… but at what level?

15

?



March 20, 2014 LiU — Solving the Halting Problem / 79

Terminology

 opaque (cf. ‘utter’): compute marks: ⟸ C.S.? 
 transparent (cf. ‘describe’): compute numbers: ⟸ logic?

Two uses of the word ‘compute’

16

describe ✔(✔)

sentence car

utter ✔ ✘
Amazingly, in the case of ‘compute’ 
there is no general agreement!



realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

March 20, 2014 LiU — Solving the Halting Problem / 79

Opaque reading: effective 
computability is physical

Transparent reading:  effective 
computability is logical or mathematical

εp

εm

Terminology (cont’d)

17



March 20, 2014 LiU — Solving the Halting Problem / 79

Comparison with logic

ρ ρ

inference

s1 sks2 …, s*

⊂

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics) D′D

inference 
engine

symbols

domain elements

a

designation (semantics)

v

18



March 20, 2014 LiU — Solving the Halting Problem / 79

Similarities between 
Turing Machines & Logic

1. Complex pattern of symbols with associated semantics 
(symbols/marks designate entities in a semantic domain 

2. Fundamental dialectic 

a. System works “formally” (independent of semantics) 

b. System understood—and normatively governed—in terms 
of the semantics (designated entities)

The fundamental truth about 
symbolic systems

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

ρ ρ

inference

s1 sks2 …, s*

⊂

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics) D′D

19



March 20, 2014 LiU — Solving the Halting Problem / 79

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

ρ ρ

inference

s1 sks2 …, s*

⊂

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics) D′D

Similarities between 
Turing Machines & Logic 
and minds!

20



March 20, 2014 LiU — Solving the Halting Problem / 79

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

ρ ρ

inference

s1 sks2 …, s*

⊂

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics) D′D

symbol

symbol

symbol
symbolsymbol

symbol

symbol

symbol

Similarities between 
Turing Machines & Logic 
and minds!

21



March 20, 2014 LiU — Solving the Halting Problem / 79

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

ρ ρ

inference

s1 sks2 …, s*

⊂

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics) D′D

1. Logic: two domains (syntax & semantics), related by theorems: 

a. Soundness: semantics tracks syntax ⟸ “wanting what you get” 

b. Completeness: syntax tracks semantics ⟸ “getting what you want” 

2. Computing: a single domain

Why the difference?

These (normative) constraints 
on the relations between 
syntax & semantics are the 
stuff & substance of logic

\

22

Differences   between 
Turing Machines & Logic



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Why the difference? 

2. The answer is buried in “reasonable encodings” 

a. The way semantic elements (“D”) are represented 
on the tape (ρ) 

b. Everyone uses reasonable encodings; almost no 
one talks about them 

3. Universal agreement 

a. If you don’t use reasonable encodings, you get strange results 

b. E.g.: represent numbers as (numerals designating) their prime factors

Reasonable Encodings
m

m

ρ

 1,745,308,631,353  =  <7, 7, 17, 47, 563, 79181>

Prime factor representation:

23



March 20, 2014 LiU — Solving the Halting Problem / 79

c. E.g.: base π encodings

Reasonable Encodings (cont’d)

π3

… ___ ___ ___ ___  .  ___ ___ …

π2 π1 π0 π–1 π–2

Some arithmetic truths:
 1 + 1 = 2
 1 + 2 = 3
 10 = 3.011021110020221130001…
 3+1 = 10.2020122021121110301…
 π = 10

 circumference = 10 × diameter ⟸ i.e., shift the decimal 
one place to the left

Base π arithmetic

24



March 20, 2014 LiU — Solving the Halting Problem / 79

d. Can’t even use simple equality (identity) 
— And equality is not a very sophisticated semantic device! 
— Cf. term arithmetic: 2 + 2 = 4

Reasonable Encodings (cont’d)

✘

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρρ ρ

n

25



March 20, 2014 LiU — Solving the Halting Problem / 79

1. In sum, in spite of the similarity of structure (mechanical operations on a 
domain of symbols designating entities in a semantic domain), when one 
looks hard logic & computing start to look  very different 

a. In computing, representation (“reasonable encoding”) is ridiculously 
restricted, compared to even very simple logics 

b. The stuff & substance of logic focuses on relations between the 
domains, which computing doesn’t seem to be concerned about  

2. So what is the “stuff & substance” of computing? 

3. It has to do with effectiveness 
constraints on operations 

4. That there are limits on both εp 
and εm is the most important 
result in all of computer science

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m s s*

m n

n0

machine M  

“computes”
f(m) = n

ρ ρ

εp

εm

Constraints

26



marks
(syntax)

semantics
(interpretation)

numbers
(mathematics)

m

m n

ndo nothing!

“computes”
f(m) = n

ρ ρ′ = ρ º f

March 20, 2014 LiU — Solving the Halting Problem / 79

5. These constraints must hold in several places 
a. Horizontally, on both “compute” operations εp & εm 
b. Vertically, on the representation relation ρ 

6. If ρ weren’t constrained, “computable” would be vacuous! 

7. Cf. the “do nothing” machine 

 7 x 13? 
 7 x 13!

what is the 

constraint 

on ρ?

SEK109 question
εp

εm

Constraints (cont’d)

27



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Can ρ (representation, 
encoding) be constrained 
in terms of effectiveness 
(εp & εm)? 

2. No! … for a variety of reasons 

— εp: wrong type (εp : mark ⇒ mark; ρ : mark ⇒ number) 

— εm: circular (we need to define εm in terms of ρ!) 

— εm: too broad! (allows the “do nothing” machine) 

3. This leads to our first result:

Constraint on ρ

R1: a) ρ must be strictly weaker than εm  (i.e., ρ ⊂ εm)
 b) Intuitively, the computable functions are ~[εp – ρ]

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m

m n

nmachine M  

“computes”
f(m) = n

ρ ρ

28



March 20, 2014 LiU — Solving the Halting Problem / 79

(Vertical) questions: about encoding (ρ) 

 Q · ρ1 — What are the constraints on “reasonable” encoding? 

 Q · ρ2 — Why are they theoretically ignored?  

 Q · ρ3 — Should they be studied (put back on the table)?  

(Horizontal) questions: about effectiveness (ε) 

 Q · ε1 — What is the fundamental character of the  
   effectiveness (“computability”) constraints? 

 Q · ε2 — Are these effectiveness constraints properties of  
•  The realm of marks (εp)? ⟸ Monday 
•  The realm of semantics (εs)? ⟸ Saturday 
•  The realm of mathematics (εm)? ⟸ Last week 

 Q · ε3 — Can computability and complexity theory be  
   conducted (as usual) at level of mathematics?

Questions (that we need to answer)

29



March 20, 2014 LiU — Solving the Halting Problem / 79

Contents

 1. Context 
 2. Turing machines 
 3. The halting problem (H) 
 4. Solving H 
 5. Morals for cognitive science

30



March 20, 2014 LiU — Solving the Halting Problem / 79

The halting problem

1. In general, given an input, machines (computers) will sometimes produce 
an output and then stop, but sometimes they will run forever, without ever 
“halting” and producing anything. 

2. As Turing proved, it turns out to be impossible to decide whether an 
arbitrary machine will halt on an arbitrary input

Machine Minput n

Will machine M  halt on input n?
(or will it run forever)?

31



March 20, 2014 LiU — Solving the Halting Problem / 79

Universal Turing machines

1. The proof consisted of two steps: 

a. He showed that a special “universal Turing machine” (UTM) could 
do “anything that could be done in a finite series of steps,” by 
simulating any arbitrary other (Turing) machine  

b. He then proved that no Turing machine (and presumably no person, 
either!) could “decide” whether arbitrary machine M would halt given 
arbitrary input n. 

2. Both steps can be 
challenged 

3. Today I will focus on 
the second (a similar 
argument can be made 
against the first)

Machine Mn

UTMn “yes”m
“no”

,

Analogy

where m represents or models M 

32



H1 — Given arbitrary Turing machine M, and input n,
decide whether or not M would halt on n

March 20, 2014 LiU — Solving the Halting Problem / 79

1. Because we are testing limits, we need to proceed  very carefully 

2. Start with a simple characterisation of H: 

3. To “decide whether something is the case or not” is not well-defined, however—
and “decide” is a semantical notion. (If there is a “decision,” you can ask what 
the devision is about—and ‘aboutness’ is always a telltale sign of intentionality 
and semantics.) 

4. To simplify, use 0 and 1, and try to build the following machine 

Solving the halting problem

0 or 1input n Turing
machine

machine M

33



5. That leads to the most common formulation of the problem: 

6. However machines can’t take either numbers or machines as inputs; nor 
can they produce numbers as outputs 

7. That’s easy enough: use 0 to mean a symbol denoting 0 (i.e., ρ(0)=0), 
1 to mean a symbol denoting 1, etc.: 

8. This leads to the following problem statement:

March 20, 2014 LiU — Solving the Halting Problem / 79

H2 — Given arbitrary Turing machine M, and input n, produce
0 or 1, depending on whether or not M would halt on n

H3 — Given arbitrary Turing machine M, and input n, produce
0 or 1, depending on whether or not M would halt on n

0 or 1input n Turing
machine

machine M

Solving the halting problem (cont’d)

34



March 20, 2014 LiU — Solving the Halting Problem / 79

9. What about machine M?  Machines can’t be inputs, either. 

*A set of states, a set of symbol (types), an initial state, and a (finite) state transition function

10. The strategy it to model M with a number m—typically a number that in 
turn “codes up” or models the set of quadruples* that Turing used to 
model Turing machines  

11. We still can’t input m, of course; we have to represent it with a symbol m 
representing m 

12. A picture 
of what it 
comes to:

mechanical
(marks)

realms

semantics 
(interpretation)

mathematics

m 0 or 1

mark n′m
n

0 or 1

Turing
machine

n

machine M

ρ ρ

Solving the halting problem (cont’d)

35



14.  Note that this makes 3 different semantic relations explicit 

a. Interpretation (ρ): marks (m, n) ⇒ numbers (m, n) 
b. Modeling: numbers (n, m) ⇒ quadruples (µ), marks (n’) 
c. Coding: quadruples (μ) ⇒ machines (M)

March 20, 2014 LiU — Solving the Halting Problem / 79

13.  Try again, using a version that 
lays everything out explicitly: 

Solving the halting 
problem (cont’d)

mechanical
(marks)

realms

semantics 
(interpretation)

mathematics

m 0 or 1

mark n′m
n

0 or 1

Turing
machine

n

machine M

ρ ρ

H4 – Given as input marks m and n, representing numbers m and n,
respectively, produce as output marks 0 or 1, representing
numbers 0 or 1, respectively, depending on whether the Turing
machine M modelled by the set of quadruples μ coded by the
number m would or would not halt if given as input the mark
n′ modelled by the number n′.

36



March 20, 2014 LiU — Solving the Halting Problem / 79

15.  Because I will focus on output, we can simplify: 

a. Assume: M accepts marks in the same language (so n = n′) 
b. Assume: Relation between mark m and machine M unproblematic 

(call it ‘indication’) 

16. Call the result H5: 

17. We can use H5 (finally!) 

18. But there is a problem: H5 is easy to meet!

H5 – Given as input marks m and n, representing numbers
m and n, respectively, produce as output marks 0 or 1,
representing numbers 0 or 1, respectively, depending
on whether the Turing machine M (indicated by m)
would or would not halt if given n as input.

Solving the halting problem (cont’d)

37



March 20, 2014 LiU — Solving the Halting Problem / 79

Contents

 1. Context 
 2. Turing machines 
 3. The halting problem (H) 
 4. Solving H 
 5. Morals for cognitive science

38



March 20, 2014 LiU — Solving the Halting Problem / 79

Machine ★

★ solves H5

ρ ρ

mechanical
(marks)

semantics 
(interpretation)

mathematics

m

mark n′m

n

0 or 1

Turing
machinen

machine M

I F H A L T S - O N ( m , n )

T H E N  0  E L S E  1★

39



1. I.e., :  ★ simply writes 
on the output tape:  

‘IF HALTS-ON(__, __) THEN 0 ELSE 1’ 

2. and then substitutes in m and n in the blanks. 

3. ★ is a cheat. Of course!  But the question is why. 

4. Many people will think the answer is obvious. 

5. What I want to convince you of is: 

That obviousness is not as obvious as it looks! 

6. We will learn a great deal by stepping through the issues slowly…

March 20, 2014 LiU — Solving the Halting Problem / 79

ρ ρ

mechanical
(marks)

semantics 
(interpretation)

mathematics

m

mark n′m

n

0 or 1

Turing
machinen

machine M

I F H A L T S - O N ( m , n )

T H E N  0  E L S E  1★Machine ★

40



March 20, 2014 LiU — Solving the Halting Problem / 79

Catching ★

1. One thing that is obvious—and is also true!—is that there is a 
problem with the output. Call that output α. 

2. Because the theory of computing is framed mathematically, let’s 
start at the bottom level—at the level of functions, arguments, and 
values—and see whether we can catch ★ there. 

3. Then, if as as that fails, we can move upwards…through 
semantics, and then finally to marks

41



March 20, 2014 LiU — Solving the Halting Problem / 79

Objection 1

1. Some people frame the following objection: 

2. Objection O1 cannot be right 

a. “Halts-on” must be well-defined, for the problem to make sense (if there 
weren’t a metaphysical fact of the matter as to whether M halts on n, 
the problem wouldn’t exist as a problem) 

b. There is no (semantical) problem in designating the “halts-on” property
—since we do that in framing the problem (for example, it is referred to 
in every proof of the non-computability results). 

c. So the mathematical facts are well-defined  

O1 — Computer science has shown that the halts-on property
“doesn’t exist”—is not well-defined, can’t be referred to, etc. 

42



March 20, 2014 LiU — Solving the Halting Problem / 79

1.  Another common objection: 

2. But α already is a numeral—satisfies the requirements on being a 0 
or 1—since 

a. Being a 0 just means that ρ(0) = 0 
Being a 1 just means that ρ(1) = 1 

b. α already satisfies this 

i. If M halts on n, then αm,n designates 0 — i.e., ρ(αm,n) = 0 

ii. If M doesn’t halt on n, αm,n designates 1 — i.e., ρ(αm,n) = 1

O2 — To solve the problem, α must be a numeral, either 0 or 1

Objection 2

43



March 20, 2014 LiU — Solving the Halting Problem / 79

1. It looks as if everything is OK at the bottom row (mathematics) 

2. A third objection focus on the middle row: of semantics, saying: 

3. All α is, though, is a simple name, plus “if…then…else”—which is an 
extremely simple operator (far simpler than the ones people need in 
order to understand the halting problem) 

4. Moreover, the “if…then…else” is unnecessary.  We could change ★ 
so that it simply outputted HALTS-ON(__, __) THEN 0 ELSE, and 
substitute in the m and n 

5. So objection 3 also fails 

O3 — The ρ that ★ uses is too complicated. Semantics (ρ) should be simple.

Objection 3

44



R2: It is intrinsic to the coherence of the halting problem, and to the 
notion of e!ective computability more generally, that if
a) ρ is the (class of ) interpretation functions mapping mark 

sequences in “reasonable encodings” on tapes onto 
mathematical entities—functions, arguments, and values,

b) ƒc is the class of e!ectively computable functions (εm), and
c) ρ′ is the human interpretation function, from symbols, words 

and thoughts onto the world, including onto those same 
mathematical entities,

then
  ρ  ⊂  ƒc  ⊂  ρ′

March 20, 2014 LiU — Solving the Halting Problem / 79

Result 2

1. The failure of objection 3 shows an interesting power relation among 
human interpretation functions, effectively computable functions, and 
reasonable encodings. 

2. We can call this our second result:

45



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Moreover, because ★ satisfies H5, we know the answer to 
question Q · ε3: whether the discourse of computability and 
complexity theory can be conducted at the level of mathematics (i.e., 
at the bottom level) 

— That answer is no!

Result 3

R3: The theory of e!ectively computable functions cannot be fully 
expressed at the (mathematical) level of functions, arguments, 
and values

46



March 20, 2014 LiU — Solving the Halting Problem / 79

(Vertical) questions: about encoding (ρ) 

 Q · ρ1 — What are the constraints on “reasonable” encoding? 

 Q · ρ2 — Why are they theoretically ignored?  

 Q · ρ3 — Should they be studied (put back on the table)?  

(Horizontal) questions: about effectiveness (ε) 

 Q · ε1 — What is the fundamental character of the  
   effectiveness (“computability”) constraints? 

 Q · ε2 — Are these effectiveness constraints properties of  
•  The realm of marks (εp)? ⟸ Monday 
•  The realm of semantics (εs)? ⟸ Saturday 
•  The realm of mathematics (εm)? ⟸ Last week 

 Q · ε3 — Can computability and complexity theory be ✘  
   conducted (as usual) at level of mathematics?

Questions—and a first answer

47



March 20, 2014 LiU — Solving the Halting Problem / 79

Where are we? 

1. We tried to catch ★ on the “bottom floor”: at the level of mathematics. 
 That failed. 

2. Then we tried to catch ★ on the “middle floor”: at the level of 
 semantics.  That failed too. 

3. We need, finally, to do what was evident initially: go up to the 
 “top floor,” and address the output α directly (i.e., αm,n for each m, n)

Catching ★
ρ ρ

mechanical
(marks)

semantics 
(interpretation)

mathematics

m

mark n′m

n

0 or 1

Turing
machinen

machine M

I F H A L T S - O N ( m , n )

T H E N  0  E L S E  1★

48



March 20, 2014 LiU — Solving the Halting Problem / 79

Objection 4

The most obvious objection at the top row has two different sides: 

1. Objection O4a is certainly false.  By design, all the αm,n are different 

2. With respect to O4b, ★ can’t literally output the same token, of course; 
what one must mean is that it must (in the appropriate cases) output 
different tokens of the same answer type.  We need to spell this out more 
carefully …

O4a — ★ always produces the same answer, independent of whether M 
halts or not. It should produce di!erent answers in each case.

O4b — ★’s outputs are too di!erent. ★ should produce the same
answer in each case where M halts on m, n; and also produce
the same answer in each case where M does not halt on m, n—
but a di!erent “same answer” in the latter case than the former.

49



March 20, 2014 LiU — Solving the Halting Problem / 79

There are 3 criteria on what should be the same, and what should be 
different, between and among different answers αm,n.  2 are factual; 1 is 
counterfactual:  

C1 — Different inputs should lead to same output, if they denote the 
same halting behaviour 

C2 — Different inputs should lead to different outputs, if they 
represent different halting behaviour; and 

C3 — If mi, nk would have led to a different output—had the 
metaphysical, ontological, conceptual (whatever) facts about 
whether Mi halts on nik been different—then in that case they 
should have led to a different output  

In order to reach our standard level of pedantic fastidiousness, however, we 
have to restate this with explicit reference to the types involved. 

Objection 4 (cont’d)

50



March 20, 2014 LiU — Solving the Halting Problem / 79

Try it again, making 
the types explicit:  

C1′ — Different inputs should lead to distinct tokens of the same output type, if 
they denote the same halting behaviour 

C2′ — Different inputs should lead to distinct tokens of different output types, if 
they represent different halting behaviour; and 

C3′ — If mi, nk would have led to a different output—had the metaphysical, 
ontological, conceptual (whatever) facts about whether Mi halts on nik 
been different—then in that case they should have led to tokens of different 
output types

Objection 4 
(cont’d)

m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

TYPE 0

TYPE 1

51



March 20, 2014 LiU — Solving the Halting Problem / 79

Leads to yet another 
formulation of the 
problem:

m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

TYPE 0

TYPE 1

Objection 4 
(cont’d)

H6 – Given as input marks m and n, representing numbers
m and n, respectively, produce as output tokens of mark
types 0 or 1, representing numbers 0 or 1, respectively,
depending on whether the Turing machine M (indicated
by m) would or would not halt if given n as input, such
that all tokens of 0 lead to a single output state or path,
and all tokens of 1 lead to a di!erent single output
state or path.  

52



March 20, 2014 LiU — Solving the Halting Problem / 79

We aren’t there yet! 

1. Objection 4b still fails! 

2. ★ already meets this 
condition H6, (i.e., even 
when elaborated in terms 
of criteria C1′—C3′. 

3. The problem is with the terms ‘same’ and ‘different’ 

4. Sameness & difference (identity) are always with respect to some 
metric of equivalence.  Thus suppose we define: 

a. TYPE 0 (the upper path) to be “represents 0”, and 

b. TYPE 1 (the lower path) to be “represents 1” 

5. Then the situation in the figure is perfectly well satisfied. 

6. Moral: if we are allowed to individuate paths semantically, then the 
three criteria (C1′–C3′) don’t do any work

Catching ★
m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

TYPE 0

TYPE 1

53



March 20, 2014 LiU — Solving the Halting Problem / 79

We haven’t yet caught ★, but 
it is becoming clear why… 

1. The intent of C1′–C3′ was 
to shift attention upwards 

a. Away from bottom and 
middle row issues (math 
and representation), 

b. Onto the upper row issue 
of the output’s “form” 

2. It has always been possible, through sufficiently devious means, to shift 
attention back down again, to semantics and represented mathematical 
entities 

3. One might try to refine C1′–C3′, to prohibit reference to relations of 
semantics and interpretation—but this is almost guaranteed never to work 

a. One would need to know what ρ was, in order to prohibit access to it—and 
prohibiting access to a function is mighty hard… 

4. A better strategy: instead of try to rule out what is illegitimate, we need to 
be more constructive, and rule in what is legitimate 

Effectively different answer (types)

realm of marks
(syntax)

realm of semantics
(interpretation)

realm of numbers
(mathematics)

m

m n

nmachine M  

“computes”
f(m) = n

ρ ρ

C
H
E
A
T
IN

G
C
O
R
R
E
C
T

54



March 20, 2014 LiU — Solving the Halting Problem / 79

Effective paths
Try to formulate a criterion that forces the “tokens of the same type” to be similar 
at the level of form (not semantically). 

C4′ — Marshal all inputs that represent situations where machines halt (i.e., of 
TYPE 0) onto one effective path, and all inputs that represents situations 
where machines do not halt (i.e., of TYPE 1) onto a different effective path. 

What’s new and different about this is the inclusion of the predicate ‘effective’

m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

single e!ective path

single e!ective path

55



March 20, 2014 LiU — Solving the Halting Problem / 79

Effective paths (cont’d)
1. We don’t yet have a definition of a 

“single effective path,” but it should 
at least require that 3 things can 
be done immediately and effectively 

a. Differentiate all 0s from all 1s 
b. Unify all 0s 
c. Unify all 1s  

2. Assemble this into a final problem statement:

m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

single e!ective path

single e!ective path

H7 – Given as input marks m and n, representing numbers m and n, 
respectively, produce as output tokens of mark types 0 or 1, 
representing numbers 0 or 1, respectively, depending on 
whether the Turing machine M (indicated by m) would or 
would not halt if given n as input, such that (i) all tokens of 0 
lead (immediately) to a single e!ective state or path, (ii) all 
tokens of 1 lead (immediately) to a single e!ective state or 
path, and (iii) all tokens of 0 are (immediately) e!ectively 
discriminable from all tokens of 1.

56



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Sure enough, H7 works 

2. But are we done? 

 No!     

3. There are still a host of problems!

★ — Caught!

m1, n1

m1, n2

m2, n1

m2, n2

mj, nk

……
……
……
……

……
……

……

…… (putative)
machine

that
solves

the
halting

problem cases that
don’t halt

cases that
do halt

in a di!erent
possible world

single e!ective path

single e!ective path

✔ H7 catches ★ 

57



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Circularity:  
a. C4 is defined in terms of “effectiveness”—the very notion we are trying 

to provide a definition of! 
b. This is a very serious issue 
c. It means that we haven’t answered the first horizontal question: Q · ε1  

2. Encoding (ρ) 
a. We got here by worrying about encoding—but C4/H7 do not mention 

encoding at all! 
b. That means that we haven’t answered any vertical questions, either! 

(Q · ρ1 through Q · ρ3) 

3. That is: we haven’t answered any of our initial questions at all! 

4. And in case one were to think this is all about the halting problem, note 
that every one of these concerns applies to all instances of computation…

Problems with C4 / H7

58



March 20, 2014 LiU — Solving the Halting Problem / 79

Task: construct a machine M* to “multiply numbers” 

1. As with H, we cannot define M* purely in terms of functions, 
arguments, and values (FAVs)—requiring it, for example, given as input 
numbers m1 and m2, to produce as output m = m1 · m2 

2. Nor is it enough to put in a minimal representational requirement: 

3. MULT2 could be satisfied by a machine as vacuous as ★ — in 
particular, by one that simply prints out “m1 · m2” 

4. To “force” m1 · m2 to actually be computed, we need to use the same 
strategy we used for H7 

Multiplication

m

MULT1 — Given as input numbers m1 and m2, produce as output
number m, such that m = m1 · m2

MULT2 – Given as input marks m1 and m2, representing numbers
m1 and m2, respectively, produce as output mark m,
representing m1·m2

59



March 20, 2014 LiU — Solving the Halting Problem / 79

1. An effective specification of multiplication: 

2. There is an interesting difference between H7 and MULT3 

a. In the case of H7—which finally stated the halting problem in an 
acceptable way—there was no role for representation (ρ) at all. 

b. In the case of MULT3, there is reliance on representation (ρ)—because 
it is only through the marks representing numbers that the operation 
can held to account as multiplication. 

3. We will get back to this!

Multiplication (cont’d)

m

MULT3 – Given as input marks m1 and m2, representing numbers
m1 and m2, respectively, produce as output mark m,
representing m1·m2, such that: (i) for any given (product)
number m, all tokens of m lead (immediately) to a single
e!ective path or state; and (ii) for any j and k, if mj ≠ mk,
then the e!ective path of mj is e!ectively discriminable
from the e!ective path of mk

60



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Meantime we have some more results 

Yet note R5 doesn’t mean that computation cannot be understood at the 
level of FAVs. 

a. The traditional semantical approach, which we saw in logic, may still 
apply—it is certainly essential to MULT3. 

b. Yet if it does apply, then why did ρ need to be so severely 
constrained? 

c. This just brings us back to the “vertical” questions Q · ρ1— Q · ρ3 

d. None of these have been answered yet! 

Morals so far

R4: No requirement formulated at the level of functions, arguments, and 
values can ever force a function to be “computed”

R5: Computing a function does not “happen” at the level of FAVs. It happens 
at the level at which the functions, arguments, and values are represented

61



March 20, 2014 LiU — Solving the Halting Problem / 79

Look again at criterion C4′—the crucial step in catching ★. (And keep in mind 
that our entire focus in analysing H was on the output; we could have, but did 
not, raise similar concerns about the inputs). 

C4′ — Marshal all inputs that represent situations where machines halt 
(TYPE 0) onto one effective path, and all inputs that represents 
situations where machines do not halt (TYPE 1) onto a different 
effective path. 

Not only does C4′ place no demands on issues of representation; it doesn’t even 
require that the outputs represent anything at all 
All it required was that the outputs be effectively discriminable 

Similarly, H7 did not require the output to be representational, either. That is:  

At least as regards the halting problem, it starts to look as if the whole business 
about representation may be a snare and a delusion

Uninterpreted marks

R6: The only tenable formulation of the halting problem that we were able to 
come up with eliminated all representational requirements on the outputs entirely 

62



March 20, 2014 LiU — Solving the Halting Problem / 79

1. In our effort to catch ★, we started out on the bottom row, considering 
mathematical entities — and failed 

2. We then moved (upwards), to the middle row, to considering representation 
and encoding (ρ). At first that seemed to help, but eventually ρ snuck back in 

3. So we stopped looking at ρ, and focused on marks alone (not on mathematics 
or semantics at all) 

4. That is (with respect to the output), we: 

a. Started at the bottom level (numbers, realm of mathematics) 
b. Then included the middle level (semantics, realm of interpretation) 
c. Then included the upper level (marks, realm of syntax) 
d. Then threw away the bottom two levels 

5. What about ρ? 

a. Started out very concerned about ρ 
b. Figured out that ρ must be very constrained (which was interesting) 
c. Now ρ has disappeared! 

Argument so far

63



March 20, 2014 LiU — Solving the Halting Problem / 79

1. What do we conclude, from the fact that ρ was irrelevant in our example? 

2. We said at the outset that the outputs needn’t be 0 or 1. 

3. Now we’ve concluded that they needn’t be representational at all. 

4. So 0 and 1 are off the table. 

5. All we have are two “discrimimable effective paths”. 

6. Why not use standard convention for classifying binary oppositions, and 
associate the two effective paths with the numbers 0 and 1 (which are free for 
use, now) 

7. This opens the door for the final (obvious?) insight 

Halting problem revisited

R7: The marks 0 and 1 do not represent the numbers 0 and 1, after all.
Rather, the numbers 0 and 1 represent (or at least model) the marks 0 and 1!

64



March 20, 2014 LiU — Solving the Halting Problem / 79

Turning the 
representation 

relation  
upside-down!

ρ ρ

mechanical
(marks, syntax)

semantic
(interpretation)

mathematical
(numbers, etc.)

m s s*

m n

n0

machine M

“computes”
f(m) = n

turn ρ upside down!
ρ ρ

m s s*

m n

n0

machine M

“computes”
f(m) = n

65



March 20, 2014 LiU — Solving the Halting Problem / 79

Contents

 1. Context 
 2. Turing machines 
 3. The halting problem (H) 
 4. Solving H 
 5. Morals

66



March 20, 2014 LiU — Solving the Halting Problem / 79

1. What we’ve concluded: 

2. R8 explains a myriad things:  

Q: Why did ρ need to be so simple? 
A:  So it can be inverted! 

Q: Why is ρ never theorized? 
A:  Because it’s not part of the subject 

matter (it’s in the theoretician’s 
toolkit, like math & telescopes) 

Q: Why does computing have a single 
subject matter (unlike logic, whose 
subject matter is double)? 

A:  Because it only studies marks and 
their manipulations 

Start climbing back up… R8: In the mathematical theory of computation 
& computability, the representation relation 
ρ runs the other way around—from numbers 
to marks instead of from marks to numbers! 

ρ ρ

m

m

nCo-reference
(equality) was
prohibited in
“reasonable
encodings” ✘

Why?

ρ ρ

m

m

nBecause
ambiguity is
prohibited in
mathematical
models

Obvious!
✔

67



March 20, 2014 LiU — Solving the Halting Problem / 79

1. Computability/complexity theory was never interested in representation 

2. Rather, computability/complexity theory is a theory of marks 

a. Not: marks in all their glory 

b. Rather: the effective properties of marks 

c. Not: marks as written symbols 

d. Rather: marks at a higher level of abstraction (relevant to the arbitrary 
construction of machines 

3. Leads to a strong, positive result 

Theory of computation

R9: In spite of the press, what has been called a theory of “e!ective 
computability” is in fact a mathematical theory of the flow of e!ect— 
that is: a mathematical theory of causality! 

68



March 20, 2014 LiU — Solving the Halting Problem / 79

(Vertical) questions: about encoding (ρ) 

 Q · ρ1 — What are the constraints on “reasonable” encoding? ✔ 

 Q · ρ2 — Why are they theoretically ignored? ✔  

 Q · ρ3 — Should they be studied (put back on the table)? ✘  

(Horizontal) questions: about effectiveness (ε) 

 Q · ε1 — What is the fundamental character of the ✔  
   effectiveness (“computability”) constraints? 

 Q · ε2 — Are these effectiveness constraints properties of  
•  The realm of marks (εp)? ⟸ Monday ✔ 
•  The realm of semantics (εs)? ⟸ Saturday 
•  The realm of mathematics (εm)? ⟸ Last week 

 Q · ε3 — Can computability and complexity theory be ✘  
   conducted (as usual) at level of mathematics?

More answers to our questions

69



March 20, 2014 LiU — Solving the Halting Problem / 79

Some computational facts that this analysis explains: 

1. Why complexity results (log, cubic, etc.) are defined over the lengths of the 
inputs (as marks)—not the mathematical magnitude of the arguments 

2. Both the structure and the popularity of linear logic, intuitionistic type 
theory, the popularity of constructive mathematics, etc. 

a. Cf. Girard’s “geometry of interaction” 

b. Linear logic looks utterly perverse, from a traditional logical point of 
view (i.e., within the model of logic we examined at the beginning). 

3. The popularity of term models (e.g., in semantics for Prolog) 

4. Why we have programming language semantics, not program semantics 

5. Attempts to fuse computing, quantum mechanics, and mechanical models 
of information 

a. E.g., amount of heat associated with loss of one bit of “information”

Consequences for computing

Primarily, 
facts about 

computational theory

70



March 20, 2014 LiU — Solving the Halting Problem / 79

6. What does this all mean for the overarching project: figuring out what 
computing is? 

a. A theory of causality is essentially a theory of mechanism 

b. But computing (as I’ve said since the beginning) is not just mechanism 

c. Computing involves an interplay of meaning and mechanism 

7. This leads to the main negative result

Consequences for computing (cont’d)

R10: The “theory of e!ective computability” is not a theory of computation at all!

71



March 20, 2014 LiU — Solving the Halting Problem / 79

Are these results as depressing, for computer science? 

1. No, they are not indictments 

2. On the contrary, a theory of what can be done effectively (mechanically) in this 
world—what it takes, how hard it is to do it, etc.—is an enormous achievement 
(worth a passel of Nobel prizes) 

3. It is just that what has been called the “mathematical theory of computation” 
or the “theory of effective computability” is in fact a theory of only one aspect 
of computing: the “mechanism” half. 

4. It will apply to computing (though it will also apply to lots of things are not 
genuinely “computational”) 

Assessment

R11: The reconstruction of the so-called “theory of computability” as a 
mathematical theory of the flow of e!ect—i.e., a mathematical theory of 
causality, analysing the powers and limitations of mechanism—does 
not render it irrelevant to a comprehensive theory of computation. It 
is just not a theory of computational systems as computational.

72



March 20, 2014 LiU — Solving the Halting Problem / 79

What do we need if we are to have a full theory of computation—one that 
recognizes it as genuinely involving both meaning and mechanism? 

1. The fundamental issue has to do with meaning and semantics 

2. Computation is semantical. In that sense the original analogy with logic was 
correct. 

3. The problem is that the role of semantical interpretation (ρ) in analysing Turing 
machine tapes was distracting. 

4. At first it looked as if it was there to deal with computation’s semantical aspect. 

5. But then we realized that was wrong. In the theory of “effective computability,” 
it was playing a meta-theoretic role, for classifying mechanical effective states. 
So the semantical aspect never got recognized—or analyzed. 

6. So what a full theory of computing needs is a theory of genuine semantics 
(relations between computational processes and the world—as in logic).

Assessment (cont’d)

73



March 20, 2014 LiU — Solving the Halting Problem / 79

1. You might think that there is a place where 
semantics is analysed in computer science: 
in the area of programming language 
semantics (axiomatic, denotational, 
operational, etc.) 

2. In separate work, I argue that that this PL 
work also fails to analyse the true nature 
of computational semantics 

3. Specifically, it focuses on the “program- 
process” relation (α in the figure), whereas 
what we need is an analysis of the relation 
between process and world (β). 

4. Note that the “process-world” relation (β) will in general not be effective—it is not 
an activity or process, not something that happens in time, not “computable” 

5. β is the computer version of what (in R2) I called the “human interpretation 
function” (ρ′)—vastly more powerful than the original or “inverted” sense of ρ. 

6. It is this β (ρ′) that we need to analyse, for a full theory of computing…

Programming language semantics

74



March 20, 2014 LiU — Solving the Halting Problem / 79

1. In spite of its benefits, the costs of this analysis are dire 

2. It will involve reconstructing 

a. Complexity results (e.g., prime factorization—can’t be characterized as that!) 
b. Absolute computability results (including halting problem!) 

3. Status 

a. The “theory of computability” is currently framed at “bottom level” 
b. My claim: that formulation is wrong 
c. Required: to reconstruct all these results as stories at the top level—about: 

i. The effective structure of machines 
ii. The effective structure of inputs 
iii. The effective structure of outputs 

4. Example: I am involved in reconstructing the Church-Turing thesis as something I 
call a “motor thesis”—along something liek the following lines: 

a. With a sufficient set of passive, perfect parts (no friction, etc.), plus one 
active source (a “motor”), you can construct a mechanism whose overall 
external behaviour, modulo issues of geometric time, is isomorphic to the 
overall external behaviour of any physically constructable machine.

Assessment (cont’d)

75



March 20, 2014 LiU — Solving the Halting Problem / 79

5. And so on …

Assessment (cont’d)

There is a huge amount of homework to do!

76



March 20, 2014 LiU — Solving the Halting Problem / 79

1. What about the computational theory of mind?

Postscript on cognitive science

computation
neuroscience
dynamics

≈

theory of mind theory of computation

phenomenology

formal symbol manipulation
information processing
e"ective computability
digital state machines

… etc.
etc. …

social (extended)

gofai

? ?

77



March 20, 2014 LiU — Solving the Halting Problem / 79

2. What our analysis has shown is that the only constraints on computing derive 
from fundamental constraints of mechanism or materiality 

3. I claimed that that mechanisms isn’t all there is to computing—that (at least in 
my view) computing involves an interplay of meaning and mechanism 

4. What our analysis shows, though, is that, because effectiveness (ε) amounts to 
nothing more than what is physically/causally possible (εp), there are no 
constraints on being computational besides being a material meaningful thing 

5. So is the computational theory of mind true? 

6. Minds are surely loci of meaning—what could meaning be, if not something that 
minds mess with? 

7. So the only real question (if it is one) has to do with mechanism. 

8. “Are we computers” is the same as “are we physically embodied creatures?”

Postscript on cognitive science (cont’d)

R12: The only way to reject the computational theory of mind is to 
be an outright dualist.  As long as dualism is false, therefore, 
the computational theory of mind is true.  Boring—but true.

78



March 20, 2014 LiU — Solving the Halting Problem / 7979

Thanks


